关于申报2016年农村中学科技馆公益项目学校的通

新科协发〔2016〕11号

为了提高服务水平,促进合肥研究院科技成果转化和产业化工作,根据国家发改委、中国科协相关活动要求,4月12日,合肥研究院首次科技成果转化投资服务活动在科学岛举行,来自各研究所、研究院投资企业、社会投资基金等单位的一百多人参加了本次活动。研究院副院长江海河出席活动并致辞。

报告题目:Schemes for Temperature Read-Out from Luminescence报 告 人:Prof.Miroslav D. Dramićanin(University of Belgrade)主 持 人:张勤远 教授报告时间:2018年10月26日下午16:00报告地点:发光材料与器件国家重点实验室402会议室欢迎广大师生积极参加!材料科学与工程学院2018年10月16日报告人简介:Prof. Dr. Miroslav D. Dramićanin (born in Belgrade on 23rd July 1966) is the Head of Department for Radiation Chemistry and Physics, Vinča Institute and Full professor of Applied Physics, Faculty of Physics, University of Belgrade, Serbia. He is Adjunct senior scientist at the Houston Center for Biomaterials and Biomimetics, University of Texas at Houston, USA. He acts as an associate editor of the Optical Materials and Member of the National Council for Physics of the Republic of Serbia. He is Chairperson of the International Conference on the Physics of Optical Materials and Devices – www.icomonline.org and Member of the Steering Committee of the Association of Italian and Serbian Scientists and Scholars - www.ais3.rs. Prof. Dramićanin has published 1 book, 7 book chapters, and 229 papers in international journals (including papers in the high impact factor journals such as Advanced Materials and ACS Nano). According to Google scholar his papers are cited more than 4800 times. He is leading Optical Materials and Spectroscopy Group () and his research is mainly focused on the synthesis and characterization of lanthanide and transition metal ion activated phosphors and nanophosphors, photocatalytic materials, and physical and chemical sensing using luminescence and luminescent nanoprobes.报告摘要:Temperature sensors comprise a market of USD 5.13 billion and are used across a broad spectrum of human activities, such as in medicine, home appliances, meteorology, agriculture, industry, and military [1]. A significant growth in demand is expected in the near future for contactless temperature sensors, which are not only easy to use, but are less complex and more accurate than contact temperature sensors. For example, there is an immediate need for noncontact thermometry for moving objects or objects which are sensitive to contact, difficult to access, or in hazardous locations [2]. Thermometry based on changes in the optical properties of materials is considered a promising route to meet these needs. Besides the well-known pyrometers and radiation thermometers, of interest are novel optical thermometers based on near-field scanning optical microscopy, Raman scattering, optical interferometry, thermoreflectance, and luminescence spectroscopy. The largest attention among emerging optical methods is in the luminescence thermometry because of the ease of detection of luminescence signal in comparison to other methods, relatively fast response, and a good spatial resolution.This contribution presents the state-of-the art applications of luminescence thermometry, giving a detailed explanation of luminescence spectroscopic schemes for the read-out of temperature [3]. Schemes are classified to as time-integrated and time-resolved ones depending on the temporal nature of the luminescence measurements. The former includes methods based on reading temperatures from the intensity of emission, the ratio of emission intensities, the changes of excitation and emission band positions and widths with temperature, and luminescence anisotropy (polarization). The later includes methods based on measurements of emission decay -times and rise -times. The contribution also presents a comparative analysis of the advantages/disadvantages between of time-integrated and time-resolved temperature read-outs. Examples of temperature read-out schemes are given for different types of materials including phosphors, quantum dots, organic dyes, and luminescent polymers.References:[1] M. D. Dramićanin, Luminescence Thermometry: Methods, Materials and Applications 1st Ed., Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, 2018.[2] Ž. Antić, M. D. Dramićanin, K. Prashanthi, D. Jovanović, S. Kuzman, T. Thundat, Advanced Materials, 28, 7745-7752 . [3] M. D. Dramićanin, Methods and Applications in Fluorescence, 4, 042001

阿克苏地区、克孜勒苏柯尔克孜自治州、喀什地区、和田地区科协:

本次活动包括培训讲座和项目对接两部分,活动邀请了国元证券保荐代表人、注册会计师高震讲授了《科创板政策与实务》,邀请了中科大管理学院博士生导师刘志迎教授讲授了《科技型企业经营战略》,邀请了8家投资基金参加了项目对接。

附件:

根据《中国科协科普部关于推荐农村中学科技馆公益项目学校的通知》(科协普函传字〔2016〕5号)精神,中国科协决定在新疆南疆四地州26个县市组织开展农村中学科技馆建设申报工作。请各县市科协根据自身实际,自愿申报,并填写《农村中学科技馆公益项目申报表》,建议每县市至少推荐1所学校。

作为安徽首家递交科创板上市材料保荐人,高震从科创板推出的背景、监管机构对科创版的定位、科创板的特色、科创板实行的注册制与现行核准制的区别以及科创版发行上市规则、上交所科创板发行上市审核问答等方面,进行了详细解读,帮助大家准确把握科创板政策内涵。他还结合上交所科创板受理案例,让大家了解科创企业融资政策趋势,以及对资本市场的影响、机遇与挑战。

请各地州科协认真组织所辖县市科协做好项目申报工作,并于2016年2月19日前将县市申报表审核汇总后,通过快递方式报送至新疆科技馆,同时将电子版发至邮箱1148822376@qq.com。

刘志迎教授从设计学派的基本模型出发,分别对外部环境评估、内部资源与能力评估、企业经营战略的SWOT、公司战略系统以及战略评估与选择六个方面进行深入分析,最后从战略地图、战略落地的内在逻辑、战略管理过程及要素、成长不同阶段的管理转型四个方面,讲述了科技型企业在成长过程中如何根据企业实际情形制定合乎时宜的战略,并通过战略体系、目标管理、绩效考评以及薪酬体系闭环管理,助力企业发展。大家反响非常热烈。

联 系 人:刘鹤 0991-6386099 15999447871

来自5个研究所和3家研究院投资企业的8个项目(在线等离子清洗在芯片封装中的应用、商用EIT人造皮肤项目、高效节能非对称干式无油螺杆压缩机项目、一种新型糖尿病治疗药物、自动化微流控核酸分析仪、污淤泥深度脱水用阳离子高分子絮凝剂的产业化及工程应用、乘梯管家及医学检验)参加了项目路演和投资对接活动。北京赛伯乐绿科投资、中科院创投、中科国元创投、申万宏源证券、黄山磐界投资、中科合海投资等基金公司均派出了高级投资经理参加了此次对接活动。通过此次路演和对接,加深了彼此间的了解,部分项目与投资方还达成了初步合作意向。

邮寄地址:新疆乌鲁木齐市沙依巴克区新医路686号

此外,江海河还为获得2018年度研究院优秀投资企业(安徽中科智能高技术有限公司)、良好投资企业/转化平台(合肥科瑞电子有限公司、淮南新能源研究中心)颁发了奖牌。

新疆科技馆 邮政编码:830054

研究院资产管理公司和科技发展处全体员工组织并参加了此次活动。

本文由澳门威利斯人手机版发布于技术,转载请注明出处:关于申报2016年农村中学科技馆公益项目学校的通

TAG标签:
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。